Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Soo Yei Ho, Chian Sing Lai and Edward R. T. Tiekink*

Department of Chemistry, National University of Singapore, Singapore 117543

Correspondence e-mail: chmtert@nus.edu.sg

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.108$
Data-to-parameter ratio $=23.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

O-Methyl N-phenylthiocarbamate

The central $\mathrm{CNC}(=\mathrm{S}) \mathrm{O}$ entity in $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NOS}$, is effectively planar and shows that the molecule exists as a thione. In the crystal structure, molecules related by a centre of symmetry are associated via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ interactions, forming thioamide dimers.

Comment

Neutral and deprotonated molecules related to the potentially polydentate title compound, $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$, (I), are known to coordinate metal centres in a variety of coordination modes involving combinations of the S, O and N atoms. The structure of $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ (Fig. 1 and Table 1) was determined in order to provide data to allow comparisons with the coordinated forms of the ligand. The deviation of the central atoms S, O, N and C 1 from their least-squares plane are 0.0002 (3), $\quad 0.0019$ (8), 0.0028 (10) and -0.0117 (12) Å, respectively. This planarity does not extend to include the phenyl group, as seen by the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$ torsion angle of $-60.13(18)^{\circ}$. The $\mathrm{C}-\mathrm{S}, \mathrm{C} 1-\mathrm{O}$ and $\mathrm{C} 1-\mathrm{N}$ bond distances of $1.6708(11), 1.3293(13)$ and $1.3288(15) \AA$, respectively, suggest some delocalization of π-electron density over the central atoms. The closest structure available for comparison is that of the O-ethyl analogue, viz. $\mathrm{EtOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ (Taylor \& Tiekink, 1994), with three independent molecules in the asymmetric unit. The average $\mathrm{C}-\mathrm{S}, \mathrm{C} 1-\mathrm{O}$ and $\mathrm{C} 1-\mathrm{N}$ distances were reported to be 1.650 (3), 1.302 (4) and 1.323 (4) Å, respectively.

In the crystal structure, symmetry-related molecules of $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ associate to form a centrosymmetric thioamide dimer (Fig. 1), having parameters $\mathrm{N}-\mathrm{H} \cdots \mathrm{S} 1^{i}=$ $2.51 \AA$ and $\mathrm{N} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}=3.3587$ (12) Å with the angle subtended at H being 165° [symmetry code: (i) $-x,-y, 1-z$].

Experimental

$\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$ was prepared according to the literature procedure (Hall et al., 1993). Crystals suitable for structure analysis were grown by slow evaporation of a dichloromethane-hexane (3/1) solution of the compound (m.p. 365-367 K).

Received 26 June 2003
Accepted 11 July 2003
Online 17 July 2003

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NOS}$
$M_{r}=167.22$
Triclinic, $P \overline{1}$
$a=5.8261(4) \AA$
$b=8.3209(5) \AA$
$c=9.6602(6) \AA$
$\alpha=65.26(2)^{\circ}$
$\beta=7.823(2)^{\circ}$
$\gamma=84.066(3)^{\circ}$
$V=413.97(5) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.342 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2429 \\
& \quad \text { reflections } \\
& \theta=2.4-30.0^{\circ} \\
& \mu=0.33 \mathrm{~mm}^{-1} \\
& T=223(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.55 \times 0.42 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker AXS SMART CCD	$R_{\text {int }}=0.020$
\quad diffractometer	$\theta_{\max }=30.0^{\circ}$
ω scans	$h=-4 \rightarrow 8$
3446 measured reflections	$k=-11 \rightarrow 11$
2365 independent reflections	$l=-12 \rightarrow 13$

128 refle

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.108$
$S=1.09$
2365 reflections
100 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.6708(11)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.3288(15)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.3293(13)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.4314(13)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.4400(15)$		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 8$	$118.72(9)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$122.98(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$126.10(10)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$112.51(9)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{O} 1$	$124.48(8)$		

The H atoms were introduced at calculated positions as riding atoms, with bond lengths of $0.87(\mathrm{~N}-\mathrm{H}), 0.94(\mathrm{CH}$-aromatic), and $0.97 \AA\left(\mathrm{CH}_{3}\right)$. The displacement parameters were 1.2 (for CH and NH) or 1.5 (for CH_{3}) times U_{eq} of the parent atoms.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Bruker,

Figure 1
Hydrogen bonding and crystallographic numbering scheme for $\mathrm{MeOC}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{Ph}$. The second molecule is generated by the symmetry operation $(-x,-y, 1-z)$. Displacement ellipsoids are shown at the 50% probability level (Johnson, 1976).
2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHEXLTL.

This work is supported by the National University of Singapore (R-143-000-139-112).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bruker (2000). SMART, SAINT and SHELXTL. Versions 5.6. Bruker AXS Inc., Madison, Wisconsin, USA.
Hall, V. J., Siasios, G. \& Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Taylor, R. \& Tiekink, E. R. T. (1994). Z. Kristallogr. 209, 64-67.

